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ABSTRACT
Nowadays advanced sensing technology enables real-time data collection of key variables
during manufacturing, known as multi-channel profiles. These data facilitate in-process mon-
itoring and anomaly detection, which have been extensively studied in recent years.
However, most studies treat each profile as a whole, e.g., a high-dimensional vector or func-
tion, and construct monitoring schemes accordingly. As a result, these methods cannot be
implemented until the entire profile has been obtained, leading to long detection delay
especially if anomalies occur in early sensing points of the profile. In addition, they require
that profiles of different samples have the same time length and feature location, yet add-
itional time-warping operation for real misaligned samples may weaken the anomaly pat-
terns. To address these problems, this article proposes an in-profile monitoring (INPOM)
control chart, which not only gives the feasibility of detecting anomalies inside the profile,
but also can handle the misalignment problem of different samples. In particular, our
INPOM scheme is built upon state space model (SSM). To better describe the clustered
between-profile correlation and avoid overfitting, SSM is extended to a regularized SSM
(RSSM), where regularizations are imposed as prior information and expectation maximiza-
tion algorithm is integrated for posterior maximization to efficiently learn the model param-
eters. Furthermore, a monitoring statistic based on one-step-ahead prediction error of RSSM
is constructed for INPOM control chart. Thorough numerical studies and real case studies
demonstrate the effectiveness and applicability of our proposed RSSM-INPOM framework.

KEYWORDS
between-profile correlation;
cluster-correlated data;
in-profile monitoring; multi-
channel profiles; regularized
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1. Introduction

With the current advanced sensing technologies, large
amounts of in-process data become available. For
example, Figure 1 shows signals collected by multiple
sensors from a diffusion process in semiconductor man-
ufacturing and a pipe-casing tightening process. Each
sensor collects real-time values of one process variable
such as voltage, temperature and torque. These data,
commonly referred to as multi-channel profiles, provide
a wealth of system state information that can be used
for in-process monitoring and quality control.

So far, many studies have been conducted for multi-
channel profile modeling and monitoring. For linear
profiles with explanatory variables, multivariate multiple
linear regression model has been widely adopted
(Noorossana et al. 2010; Zou, Ning, and Tsung 2012;
Eyvazian et al. 2011), where the functional relationship
between responses and predictors is monitored. These

works assumed the error terms either within or between
profiles are independent. To better account for the
within-profile correlation (WPC) inside each single pro-
file, Zhang et al. (2014) adopted a Gaussian process, and
Khedmati and Niaki (2016) imposed an autoregressive
model on the error term. However, they have limited
power to describe between-profile correlation (BPC). To
address this issue, dimension reduction (feature extrac-
tion) techniques are generally applied, and the extracted
low-dimensional features are used for monitoring. For
example, Nomikos and MacGregor (1995) proposed a
vectorized principal component analysis (VPCA) by
combining multi-channel profiles into a long univariate
profile for feature extraction. Clearly, this approach loses
certain detection power since VPCA breaks the original
BPC structure. To solve this problem, other PCA-based
methods were proposed. Examples include uncorrelated
multi-linear PCA (UMPCA) (Paynabar, Jin, and Pacella
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2013), multi-linear PCA (MPCA) (Grasso, Colosimo,
and Pacella 2014), and multi-channel functional PCA
(MFPCA) (Paynabar, Zou, and Qiu 2016).

All the above methods assumed multi-channel pro-
files are strongly correlated. However, this assumption
may violate the reality, especially if the number of
profile channels is large. As shown in Figure 1(a), dif-
ferent profiles are actually cluster-correlated. Profiles
within a cluster (e.g., S1 and S2, S3 and S4, S5 and
S6) have similar patterns and are correlated, while
profiles from different clusters (e.g., S1 and S3) have
quite different features and are almost uncorrelated.
This is the so-called clustered BPC, which has recently
received increasing attention in the literature. For
instance, Zhang et al. (2018b) proposed a sparse
multi-channel functional PCA (SMFPCA) for weakly-
correlated multi-channel profile monitoring. Li et al.
(2020) further extended it to tensor data and proposed
a graph-based tensor completion model.

Though these existing methods have shown prom-
ising results in multi-channel profile monitoring, there
are still some challenges to be addressed. First, the
monitoring efficiency is sacrificed since these detec-
tion algorithms cannot be implemented until the
whole profile has been collected. When the profile
already shows significantly irregular pattern in early
sensing points, it is uneconomical to wait for moni-
toring until the entire profile is obtained, especially
for processes with high production costs and limited
transmission resources. Second, the above methods
require that profiles of different samples be synchron-
ized with equal number of sensing points and have

the same features located at the same sensing point,
i.e., have the same time length and feature location.
However, these assumptions cannot be satisfied in gen-
eral since different samples are usually misaligned due
to system inherent fluctuations. We demonstrate this
point using data from the pipe-casing tightening process
shown in Figure 1(b). Three sensors (S1-S3) located on
a backup tong are used to collect the number of turns,
torque signal, and rotating speed respectively during this
process. Since the initial states of different pipes vary
according to their different pre-tightening results, differ-
ent pipes take different amounts of time to complete
the tightening process and hence have unequal time
lengths. Also, the local shoulder deformation occurs at
different time points, as the observable peaks show.
Consequently, for all current monitoring algorithms,
time-warping method was commonly adopted to align
profiles as a preprocessing step in functional data ana-
lysis (Ramsay and Silverman 2005; Zhang et al. 2021;
Paynabar, Zou, and Qiu 2016; Zhang et al. 2018a).
However, this operation forces OC profiles to resemble
the IC reference one, which may weaken the OC pat-
terns, especially when the misalignment problem is sig-
nificant (Grasso et al. 2016), as shown for the S2 profile
in Figure 1(c). This fault-weakening effect is more sig-
nificant for sparse shifts, which can be demonstrated by
the poor detection power of the PCA-based methods for
spike shift in our numerical studies.

A more reasonable method is to model the profile in
a dynamic view. Instead of considering the whole profile
as a functional curve, a dynamic model treats the values
of a profile as observations sequentially generated by a

Figure 1. Multi-channel profiles (after normalization) from two advanced manufacturing processes: (a) The six selected sensor pro-
files (bottom voltage, top voltage, temperature of pipe 1, temperature of pipe 2, pressure of cylinder 1, and pressure of cylinder 2)
over three in-control (IC) samples and two out-of-control (OC) samples from the diffusion process in semiconductor manufacturing;
(b) The three-channel profiles (number of turns, torque signal, and rotating speed) over three IC samples and two OC samples
from the pipe-casing tightening process before alignment and (c) after time-warping.
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dynamic system. Hence, we aim to model the dynamic
evolution mechanism behind the system rather than the
static features of the curve. As such, profiles of different
samples can vary in time length, and features can be
unsynchronized with time variations. More importantly,
it gives the feasibility of detecting anomalies inside the
profile. We highlight this idea as “in-profile monitoring”
(INPOM), which is the focus of this article.

So far to our best knowledge, the only existing works
able to deal with INPOM are Qiu and Xiang (2014) and
Qiu, Zi, and Zou (2018), where each sample was treated
as a separate process whose dynamic longitudinal
behavior was of interest. Their application scenario is
different from our online profile monitoring scenario
where samples are coming in a sequential way. That is,
once a sample goes OC at a certain time point, its fol-
lowing time points and all the time points of subse-
quent samples will always be OC. Also, both works
only consider single profiles, and cannot be trivially
extended to multi-channel profile modeling. Another
related research field of INPOM is time series monitor-
ing, where sequential observations of a certain sample
are collected as a time series from a dynamic system.
Among all methods, state space model (SSM) has been
generally applied for process modeling and monitoring
(Barber 2012). SSM supposes the observed data are
functions of certain unobserved (latent) states, which
are autocorrelated and evolve over time. This structure
is very general, and includes autoregressive moving
average (ARMA) model as a special case (Gevers and
Wertz 1984). Furthermore, this latent structure is par-
ticularly suitable for manufacturing systems, where the
evolution of measured variables is generally driven by
several underlying physical or mechanical characteris-
tics. For example, in the diffusion process shown in
Figure 1(a), electronic sensors (S1 and S2) are jointly
influenced by circuit power, while temperature sensors
located adjacently (S3 and S4) are both linearly
depended on thermal energy. Thermal energy and cir-
cuit power can then be regarded as two latent states in
this case. Out of this concern, SSM is naturally able to
handle the clustered BPC by modeling different profiles
as generations from different latent states. However,
most existing works focused on traditional multivariate
process monitoring, and assumed data of sequential
samples follow an SSM (Shi 2006; Xiang and Tsung
2008; Liu, Shi, and Hu 2009). Yet in our case, the obser-
vations of different sensing time points inside each
multi-channel profile evolve dynamically and can be
described by an SSM, while different samples are
independent.

To address the limitations of existing works, this article
proposes an SSM-based framework to dynamically model
and monitor multi-channel profile data, with especial
application in manufacturing system. To account for the
clustered BPC among different profiles, SSM is extended
to a regularized SSM (RSSM) by imposing a graph
Laplacian regularization on the observation matrix of
SSM. An l1 regularization is also imposed on the transi-
tion matrix of SSM to avoid overfitting. By treating the
above regularizations as prior information, the model
parameters can be efficiently learned via Bayesian infer-
ence, where expectation maximization (EM) algorithm is
incorporated for posterior maximization. Built upon this,
a T2 monitoring statistic based on one-step-ahead predic-
tion error is constructed for INPOM.

To understand the superiority of RSSM-INPOM
framework, we would like to further provide some
insights of it. First, though profile data of each sample
look like smooth curve(s), they are in essence generated
sequentially over time according to the dynamic evolu-
tion mechanism of system. This is in accordance with
the modeling mechanism of SSM, where profiles are
characterized by a set of dynamic temporal bases stacked
by the latent state variables over time. This brings the
merit that the bases of SSM are described in a dynamic
way and can be different for different samples, which is
extremely effective for misaligned samples since it avoids
time-warping operation that may weaken the anomaly
patterns. More importantly, since profile data are treated
as observations sequentially generated from a dynamic
system, SSM can detect anomalies inside the profile as
long as observations up to the current time point have
provided enough evidence. This advantage is more sig-
nificant for processes that need long time to complete.
Finally, by enforcing certain structure regularizations on
the parameters of SSM, our extended RSSM makes it
more suitable for multi-channel profile modeling in
advance manufacturing.

The remainder of this article is organized as follows.
Section 2 introduces our proposed method in detail. In
Section 3, simulation studies are demonstrated to inves-
tigate the performance of the RSSM-INPOM frame-
work by comparing with six benchmarks. Two real
case studies are conducted in Section 4. Finally,
Section 5 concludes this article with several remarks.

2. Methodology

In this section, a RSSM-INPOM scheme is developed
for Phase II monitoring of multi-channel profiles with
clustered BPC. We first introduce the model formula-
tion of RSSM in Section 2.1. Then in Section 2.2,
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maximum a posteriori (MAP) estimation is adopted
for parameter learning. In Section 2.3, one-step-ahead
prediction errors are further used to construct an
INPOM control chart. Finally, Section 2.3, discusses
the practical guidelines for designing and implement-
ing our RSSM-INPOM framework.

2.1. Regularized sate space model (RSSM)

Consider a system with p-dimensional (i.e., p-channel)
profiles. For a particular sample i, its observation
recorded at sensing time point t can be denoted as a p-

dimensional vector yðiÞt ¼ ½yðiÞ1t , :::, yðiÞpt �0: Then profile data

of sample i is YðiÞ ¼ fyðiÞ1 , :::, yðiÞt , :::, yðiÞTi
g, where Ti is

the profile length and can be different for different sam-
ples. We further assume q-dimensional latent state vari-

able xðiÞt ¼ ½xi1t , :::, xiqt�0 and XðiÞ ¼ fxðiÞ1 , :::, xðiÞt , :::, xðiÞTi
g:

We consider yðiÞt as a linear combination of xðiÞt masked

by an output noise vðiÞt which follows a multivariate
Gaussian distribution with mean 0 and covariance

matrix R, i.e., vðiÞt � Nð0,RÞ, then
yðiÞt ¼ CxðiÞt þ vðiÞt , i ¼ 1, :::,N; t ¼ 1, :::,Ti, [1]

where C is the p� q observation matrix that describes
the BPC structure and N is the number of samples.
The WPC over time can be depicted by the evolution
of the state variable as

xðiÞtþ1 ¼ AxðiÞt þ xðiÞ
t , i ¼ 1, :::,N; t ¼ 1, :::,Ti � 1,

[2]

where A is the q� q transition matrix, xðiÞ
t � Nð0,QÞ

is the Gaussian distributed state noise, and the initial
state variable is assumed to follow a multivariate

Gaussian distribution as xðiÞ1 � Nðl1,V1Þ: Eqs. [1]
and [2] are known as the observation equation and
the transition equation of SSM respectively. It is the

probabilistic xðiÞ1 , vðiÞt , and xðiÞ
t that allow different

samples vary in time length and feature location. Let
H ¼ A,C,Q,R, l1,V1f g denote the complete set of
the parameters of SSM. It is noted that we are inter-
ested in single-stage manufacturing processes, and
hence we assume the model parameters are time
invariant. Different samples are independent and
characterized by the same dynamic model.

To better capture the BPC of multi-channel
or especially high-dimensional profiles, we now
enforce certain structure regularizations on the
model parameters of SSM considering the following
two features demonstrated by real data in
manufacturing.

Feature 1. C ¼ ½c:1, :::, c:q� ¼ ½c01: , :::, c0p:�0 has a clustered
structure. Consider that in practice, different profiles of
a sample are jointly influenced by different types of sys-
tem characteristics. Profiles (sensors j1 and j2) that
depend on the same system characteristics have strong
BPC, and thus their corresponding rows of C, i.e., cj1:
and cj2:, tend to be similar. On the contrary, profiles
(sensors) that depend on different system characteristics
have weak BPC, and thus their corresponding rows of
C tend to be different. In other words, clustered BPC
will result in a clustered C.

Suppose we have the cluster information of multi-
channel profiles through a predefined similarity matrix
W ¼ ½wj1j2 �, where larger wj1j2 indicates that sensor j1
and sensor j2 are more correlated. For example, in the
previous example of the diffusion process, wj1j2 of two
closely located temperature sensors would be large.
Generally, W can be set according to domain know-
ledge. If there is no preference on W, we can simply
set it according to profile similarity in a data-driven

way, e.g., wj1j2 ¼ exp ð� 1
N

PN
i¼1

PTi
t¼1 jyðiÞj1t � yðiÞj2t j2=TiÞ:

This cluster information can be used to derive a desir-
able C. In particular, we assume each column of the
observation matrix c:kðk ¼ 1:::qÞ independently has a
Gaussian distribution prior (Zhou et al. 2012) as

p0ðCÞ ¼
Qq

k¼1 p0ðc:kÞ where c:k � Nð0, ðk1LÞ�1Þ, i.e.,

p0 c:kj0, ðk1LÞ�1
� �

¼ k1Lj j12
ð2pÞp2

exp � k1c0:kLc:k
2

� �
, k ¼ 1:::q:

[3]

Here k1 is the tuning parameter. We define L ¼
D�W, where D ¼ diagðd1, :::, dpÞ with dj1 ¼Pp

j2¼1 wj1j2 , j1 ¼ 1, :::, p: With this design, the prior
leads to a shrinkage on k1trðC0LCÞ ¼
k1
Pp

j1¼1

Pp
j2¼1 kcj1: � cj2:k22wj1j2 where _c denotes the

trace of a matrix. It indicates that for similar sensors
j1 and j2 with larger wj1j2 , their corresponding rows
cj1: and cj2: on XðiÞ should be similar. As such, it will
lead to a clustered structure of C: In fact, this is the
graph Laplacian regularization commonly used for
graph-based modeling (Ando and Zhang 2007). By
defining different sensors as nodes, W as the adja-
cency matrix and D as the degree matrix, L is the
graph Laplacian matrix. This penalty encourages
smoothness of cj: over the graph.

Feature 2. A ¼ ½ak1k2 � is a sparse matrix due to the fol-
lowing two reasons: (1) Different system characteristics
identified as different states are likely to be sparsely
correlated. In the previous example of diffusion process,
thermal energy (state k1) and circuit power (state k2)
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do not correlate with each other and consequently their
associated entry in A, i.e., ak1k2 , is more likely to be
zero; (2) A sparse A can also help remove redundant
states, consequently avoid overfitting and guarantee
model identifiability.

To achieve sparsity on the transition matrix, we
impose a Laplace prior independently on each element
of A, which is equivalent to the l1 regularization (Liu and
Hauskrecht 2013), i.e., p0ðAÞ ¼

Qq
k1¼1

Qq
k2¼1 p0ðak1k2Þ,

where ak1k2 � Laplace 0, 2
k2

� �
, i.e.,

p0 ak1k2 j0,
2
k2

� �
¼ k2

4
exp � k2

2
ak1k2j j

� �
,

k1 ¼ 1, :::, q; k2 ¼ 1, :::, q:

[4]

This prior distribution tends to shrink the magni-
tude of k2

Pq
k1¼1

Pq
k2¼1 jak1k2 j ¼ k2jjAjj1, where k2 is

the tuning parameter. As a result, it will induce zero
entries in A: So far, the basic two-layer representation
of SSM (Eqs. [1] and [2]) and the two prior distribu-
tions (Eqs. [3] and [4]) formulate our proposed RSSM
in a probabilistic perspective.

2.2. Model inference based on EM-MAP algorithm

Since A and C have prior distributions, we can use the
MAP framework for parameter estimation. Our object-
ive is to compute the MAP estimation of H given N
historical IC samples, i.e., Ĥ¢argmaxHpðHjYð1:NÞÞ:

However, direct maximization of the posterior distribu-
tion pðHjYð1:NÞÞ is extremely difficult since its closed-
form solution does not exist. Alternatively, the aug-
mented complete posterior pðHjXð1:NÞ,Yð1:NÞÞ has a
simpler analytical expression, yet integrating out Xð1:NÞ

proves to be a difficult task. To solve this, EM algo-
rithm can be adopted. In particular, in the E step of
the rth iteration, the expectation of the augmented
complete posterior is calculated using the observed data
Yð1:NÞ and the current best estimation Hr�1: In the M
step, the parameters are updated as Hr by maximizing
the expected augmented complete posterior. These two
steps iterate until convergence and obtain Ĥ by gener-
ating a sequence of parameters fHrg from an initial
estimation H0: The appealing property of EM algo-
rithm is that the marginal distribution increases mono-
tonically with the iteration, i.e., pðYð1:NÞjHrÞ �
pðYð1:NÞjHr�1Þ given mild regularity conditions (Wu
1983). The specific E and M steps for the rth iteration
in our case are shown as follows:

E Step
Evaluate the conditional expectation of the log aug-

mented complete posterior:

where the last two terms are the prior regularizations
and the first term is the expected log likelihood which
can be derived following Ghahramani and Hinton
(1996). Specifically, due to the Markovian structure of
SSM, we have

QðH,Hr�1Þ ¼ E½log ðpðHjXð1:NÞ,Yð1:NÞÞÞjYð1:NÞ,Hr�1�
/ E½log ðpðXð1:NÞ,Yð1:NÞjHÞÞjYð1:NÞ,Hr�1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expected log likelihood

þ ½� k1
2
trðC0LCÞ � k2

2
kAk1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prior regularizations

, [5]

E½log ðpðXð1:NÞ,Yð1:NÞjHÞÞjYð1:NÞ,Hr�1�

/ � 1
2

XN
i¼1

XTi

t¼1

E½ðyðiÞt � CxðiÞt Þ0R�1ðyðiÞt � CxðiÞt ÞjYðiÞ,Hr�1� þ
XN
i¼1

Ti log jRj

þ
XN
i¼1

E½ðxðiÞ1 � l1Þ0V�1
1 ðxðiÞ1 � l1ÞjYðiÞ,Hr�1� þ N log jV1j

þ
XN
i¼1

XTi

t¼2

E½ðxðiÞt � AxðiÞt�1Þ0Q�1ðxðiÞt � AxðiÞt�1ÞjYðiÞ,Hr�1� þ
XN
i¼1

ðTi � 1Þ log jQj

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
:
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By polynomial expansion of the above equation,
Eq. [5] can be explicitly expressed as a linear function
of the following three terms (For notation conveni-
ence, we omit the sample superscript i here):

x̂t � E xtjy1, :::, yT ,Hr�1
	 
 � xtjT ,

Pt � E xtx0tjy1, :::, yT ,Hr�1
	 
 � V tjT þ xtjTx0tjT ,

Pt, t�1 � E xtx0t�1jy1, :::, yT ,Hr�1
	 
 � V t, t�1jT þ xtjTxt�1jT ,

[6]

where xtjT is the expectation of xt, V tjT is the vari-
ance of xt, and V t, t�1jT is the covariance of xt and
xt�1, given all the observations y1, :::, yT in the cur-
rent profile. These variables can be obtained via
Kalman filter (KF) and Kalman smoother (KS).
Specifically, KF is a forward recursion which esti-
mates xtjt ,V tjt ,V t, t�1jt using the past t observations
y1, :::, yt, i.e.,

xtjt�1 ¼ Axt�1jt�1, [7a]

V tjt�1 ¼ AV t�1jt�1A
0 þ Q, [7b]

K t ¼ V tjt�1C
0ðCV tjt�1C

0 þ RÞ�1, [7c]

xtjt ¼ xtjt�1 þ K tðyt � Cxtjt�1Þ, [7d]

V tjt ¼ V tjt�1 � K tCV tjt�1, [7e]

where the initial expectation and covariance matrix
are x1j0 ¼ l1 and V1j0 ¼ V1: Based on the results of
KF, KS is a backward recursion which modifies the
estimates of KF using the future observations, i.e.,

Jt�1 ¼ V t�1jt�1A
0ðV tjt�1Þ�1, [8a]

xt�1jT ¼ xt�1jt�1 þ Jt�1ðxtjT � Axt�1jt�1Þ, [8b]

V t�1jT ¼ V t�1jt�1 þ Jt�1ðV tjT � V tjt�1ÞJ 0t�1, [8c]

V t�1, t�2jT ¼ V t�1jt�1J
0
t�2

þ Jt�1ðV t, t�1jT � AV t�1jt�1ÞJ 0t�2, [8d]

where the initial covariance of xT and xT�1 is
VT,T�1jT ¼ ðI � KTCÞAVT�1jT�1: After these two
steps, x̂t,Pt ,Pt, t�1 can be obtained by substituting the
computed xtjT ,V tjT ,V t, t�1jT into Eq. [6], followed by the
expectation of the log augmented complete posterior com-
puted via Eq. [5]. It should be noted that KF and KS can
only handle stationary profile data, i.e., A has all stationary
roots. Fortunately, this can be generally satisfied for profile
data from manufacturing systems since machines are usu-
ally stable when in-control. When profiles are nonstation-
ary, it is still solvable with a trivially extended form of KF,
e.g., the diffuse Kalman filter (Jong 1991).

M Step
Update each parameter separately:

Hr ¼ argmax
H

QðH,Hr�1Þ: [9]

1. Updating A: Take out all the relevant terms w.r.t
A in QðH,Hr�1Þ, then the optimization problem
is equivalent to Ar ¼ argminAf ðAÞ, where

It can be decomposed into a non-differentiable part
f1ðAÞ and a differentiable part f2ðAÞ: We can then
apply the proximal gradient descent method with
iterative soft-thresholding algorithm (ISTA) to minim-
ize f ðAÞ: The update rule in the mth iteration of the
gradient descent algorithm is

f ðAÞ ¼ k2
2
kAk1|fflfflfflffl{zfflfflfflffl}
f1ðAÞ

þ 1
2
tr Q�1

XN
i¼1

XTi

t¼2

PðiÞ
t � PðiÞ

t, t�1A
0 � APðiÞ0

t, t�1 þ APðiÞ
t�1A

0
h i( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f2ðAÞ

:

Ar
m ¼ Sk2, g Ar

m�1 � g�f2ðAjA ¼ Ar
m�1Þ

	 

¼

Ar
m�1 � g�f2ðAjA ¼ Ar

m�1Þ � k2g if Ar
m�1 � g�f2ðAjA ¼ Ar

m�1Þ > k2g,
Ar
m�1 � g�f2ðAjA ¼ Ar

m�1Þ þ k2g if Ar
m�1 � g�f2ðAjA ¼ Ar

m�1Þ < �k2g,
0 otherwise,

8<
: [10]
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where Ar
0 ¼ Ar�1 is the initial value, and Sk2, g is a soft-

thresholding function with a thresholding of k2g: g is the
fixed step size set as g ¼ 1

kQ�1kF �k
PN

i¼1

PTi
t¼2

PðiÞ
t�1kF

which

proves to guarantee a fast convergence rate (Liu and

Hauskrecht 2013). �f2ðAjA ¼ Ar
m�1Þ ¼

PN
i¼1

PTi
t¼2

Q�1Ar
m�1P

ðiÞ
t�1 �

PN
i¼1

PTi
t¼2 Q

�1PðiÞ
t, t�1 is the gradient of

the differentiable part f2ðAÞ at value Ar
m�1: Suppose this

loop converges in the Mth iteration, then we
have Ar ¼ Ar

M:

2. Updating C: Similarly, the original optimization
problem on C can be converted to Cr ¼
argminCgðCÞ where

gðCÞ ¼ k1
2
trðC0LCÞ þ 1

2
tr

R�1
XN
i¼1

XTi

t¼1

yðiÞt yðiÞ
0

t � Cx̂ðiÞt yðiÞ
0

t � yðiÞt x̂ðiÞ
0

t C0 þ CPðiÞ
t C0

h i( )
:

Set �gðCjC ¼ CrÞ to zero. We have k1RLCr þ
CrPN

i¼1

PTi
t¼1 P

ðiÞ
t ¼PN

i¼1

PTi
t¼1 y

ðiÞ
t x̂ðiÞ

0
t , which is a

Sylvester equation. We adopt the Bartels-Stewart algo-
rithm to get the following closed-form solution
(Bartels and Stewart 1972):

vecðCrÞ ¼ Iq 	 k1RLþ
XN
i¼1

XTi

t¼1

PðiÞ
t 	 Ip

 !�1

� vec
XN
i¼1

XTi

t¼1

yðiÞt x̂ðiÞ
0

t

 !
, [11]

where Ip and Iq represent the identity matrices with
dimension p and q, and 	 is the Kronecker product.
When p or q is large, conjugate gradient (CG) algo-
rithm in Rao et al. (2015) can be alternatively adopted
to avoid inverse operations.

3. Updating Q, R, l1 and V1 : All these parameters
have closed-form solutions and can be solved via
the following.

Qr ¼ 1PN
i¼1Ti � N

XN
i¼1

XTi

t¼2

PðiÞ
t � PðiÞ

t, t�1A
r0 � ArPðiÞ0

t, t�1 þ ArPðiÞ
t�1A

r0
h i

,

[12]

Rr ¼ 1PN
i¼1Ti

XN
i¼1

XTi

t¼2

yðiÞt yðiÞ
0

t � Crx̂ðiÞt yðiÞ
0

t � yðiÞt x̂ðiÞ
0

t Cr0 þ CrPðiÞ
t Cr0

h i
,

[13]

lr1 ¼
1
N

XN
i¼1

x̂ðiÞ1 , [14]

V r
1 ¼

1
N

XN
i¼1

PðiÞ
1 � x̂ðiÞ1 x̂ðiÞ

0

1

h i
: [15]

Algorithm 1. EM-MAP algorithm for model inference

Input: YðiÞ, i ¼ 1, :::,N
Result: Estimated Ĥ ¼ Â, Ĉ, Q̂, R̂, l̂1, V̂ 1

� �
Initialization For r¼ 0, set H0 by subspace
identification
Estimation (by EM algorithm)
while QðHr,Hr�1Þ � QðHr�1,Hr�2Þ  � 10�4 � jQ
ðHr�1, Hr�2Þj do

Set r ¼ r þ 1
E step:
for i¼ 1,… ,N do
Update xðiÞtjTi

,VðiÞ
tjTi

,VðiÞ
t, t�1jTi

using the current
Hr�1 via Eqs. [7] and [8]

Calculate x̂ðiÞt ,PðiÞ
t ,PðiÞ

t, t�1 via Eq. [6]
end
M step:
while kAr

m � Ar
m�1kF � 10�3 � kAr

m�1kF do
Set m ¼ mþ 1
Update Ar

m via Eq. [10]
end
Update Cr,Qr,Rr, lr1,V

r
1 via Eqs. [11] to [15]

Calculate QðHr,Hr�1Þ via Eq. [5]
end

Denote the converged estimation results as Ĥ ¼
Â, Ĉ, Q̂, R̂, l̂1, V̂ 1

� �
: Considering that EM algorithm is

sensitive to initial values, we implement the parameter
initialization process via subspace identification, which
is commonly used for model inference of SSM. Its
details are shown in Appendix A. With this initializa-
tion algorithm, the convergence of EM can be guaran-
teed and the convergent speed is significantly expedited
(Overschee and Moor 1996). Algorithm 1 summarizes
the EM-MAP algorithm for model inference.

2.3. In-profile monitoring (INPOM)

Denote the estimated model from historical IC sam-
ples as H0: We formulate the monitoring problem as
an in-profile change-point model where anomalies
occur since time point s0 þ 1 of sample m0 þ 1:
Define the accumulative time-point index since the
first time point of the first sample as u, then the accu-
mulative change point is u0 ¼ T1 þ :::þ Tm0 þ s0:
The null hypothesis and the alternative hypothesis are
established in the following form:
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H0 : H ¼ H0, for u ¼ 1, :::, u0,
H1 : H 6¼ H0, for u ¼ u0 þ 1, ::::

�
Notably, compared with the traditional change-point

formulations of online monitoring, we have two levels
of change points, s0 in time-point level, and m0 in
sample level. Consequently, here we define two criteria
for evaluating the detection delay. Suppose the moni-
toring scheme triggers an OC alarm at u1, i.e., time
point s1 of sample m1, we then define its OC profile
run length (PRL1) and OC time run length (TRL1) as

PRL1 ¼ m1 �m0, TRL1 ¼ u1 � u0, [16]

where PRL1 is the same as the OC run length of trad-
itional control charts, which measures the detection
delay in sample level. It is mainly used for comparison
when shift magnitudes are small. When shift magni-
tudes are larger, RSSM-INPOM may successfully detect
anomalies before the current OC sample m1 is com-
plete, and PRL1 can no longer accurately measure the
detection delay. Consequently, TRL1 can be adopted to
evaluate the detection delay of RSSM-INPOM in time-
point level. For the traditional profile monitoring meth-
ods, TRL1 is defined as

Pm1
i¼m0þ1 Ti � s0:

Now we aim to construct a monitoring statistic for
oncoming sequential data. When the observations

yðiÞ1 , :::, yðiÞt�1 come sequentially for a certain online sample

i, we predict its observation one step ahead by yðiÞtjt�1 ¼
CxðiÞtjt�1, where x

ðiÞ
tjt�1 ¼ AxðiÞt�1jt�1 can be obtained via KF

in Eq. [7]. Furthermore, when the next observation at
time point t has been collected, the corresponding one-
step-ahead prediction error (OSPE) can be calculated by

eðiÞt ¼ yðiÞt � yðiÞtjt�1: OSPE reflects the untraceable signal

of yðiÞt , which includes system inherent fluctuations and
anomaly information that cannot be described by the IC
model with H0: As such, we can transform monitoring
H into monitoring OSPE (Xiang and Tsung 2008).

UnderH0, we can derive that eðiÞt follows a p-dimensional
multivariate Gaussian distribution with mean 0 and covari-
ance matrix SðiÞt ¼ CVðiÞ

tjt�1C
0 þ R (Durbin and Koopman

2012). Therefore, we construct the monitoring statistic based
on the Hotelling T2 test of eðiÞt : To handle anomalies with
small shift, we incorporate the monitoring scheme with
exponentially weighted moving average (EWMA) technique.
Different from existing works for profile monitoring where
EWMA is conducted in sample level, our exponential
weights are imposed in time-point level and do not break
across different samples. Denote eu ¼ eðiÞt , Su ¼ SðiÞt , then
the EWMAmonitoring statistic can be defined as

T2
u ¼ Z0

uU
�1
u Zu, [17]

where

Zu ¼ ceu þ ð1� cÞZu�1, Uu ¼ VarðZuÞ,
where Z0 is initialized as 0, and c 2 ½0, 1� is the EWMA
smoothing parameter. To compute Uu, we first note that

eðiÞt is orthogonal to yðiÞ1 , :::, yðiÞt�1 along with yðiÞtjt�1 accord-

ing to the projection theorem of KF (Anderson,
Moore, and Eslami 1982). Thus, we have

CovðeðiÞt , eðiÞs Þ ¼ E½eðiÞt ðyðiÞs � yðiÞsjs�1Þ0� ¼ 0, for s ¼
1, :::, t � 1: Furthermore, with the independence
assumption among different samples, we can derive
that eu is independent over different accumulative time
points u. Therefore, we have

Uu ¼ Var ceu þ ð1� cÞZu�1½ � ¼ c2Su þ ð1� cÞ2Uu�1:

It should be pointed out that the forward estimation
algorithm of VðiÞ

tjt�1 contains only Eqs. [7b], [7c], and [7e],
which are irrelevant to the observations yðiÞt : Therefore, for
better monitoring efficiency, Su and U�1

u can be estimated
in advance for preparation of online monitoring.

We set an upper control limit (UCL) for Eq. [17] and
define once T2

u >UCL, the monitoring system will trigger
an OC alarm. The detailed monitoring scheme is sum-
marized in Algorithm 2. It is noted that the training
phase requires full-length profiles, while the monitoring
phase only requires past observations since it does not
consider the backward recursion, which gives the feasibil-
ity of INPOM. Owe to the advantage of offline computa-
tion of U�1

u , the computational complexity of calculating
T2
u is reduced to Oðp2 þ pqÞ, and the complexity of cal-

culating OSPE by KF is Oðp2:376 þ q2Þ (Thrun 2002).
Overall, the computational complexity of our RSSM-
INPOM control chart for one time point is Oðp2:376 þ
p2 þ q2 þ pqÞ: This ensures fast computation for online
monitoring and quick detection of anomalies.

Algorithm 2. In-profile monitoring scheme based
on RSSM

Input: Data streams yðiÞt , IC model parameter H0

Estimated VðiÞ
t�1jt via Eqs. [7b], [7c], and [7e]

Estimated SðiÞt via SðiÞt ¼VarðeðiÞt Þ¼CVðiÞ
tjt�1C

0 þ R
Estimated U�1

u via Uu ¼ c2Su þ ð1� cÞ2Uu�1

Result: whether trigger an OC alarm, if yes, output
PRL1 and TRL1 via Eq. [16]

for u ¼ 1, :::,T1 þ � � � þ Ti�1 þ t, ::: do
Predict yðiÞtjt�1 ¼ CxðiÞtjt�1 via Eq. [7] given yðiÞ1 , :::, yðiÞt�1

Calculate eðiÞt ¼ yðiÞt � yðiÞtjt�1 given yðiÞt
Calculate T2

u via Eq. [17]
if T2

u >UCL then
Trigger an OC alarm and return u as u1, i asm1, t as s1
Break

end
end
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2.4. Guidelines for design and implementation

This section provides guidelines on designing and
implementing the proposed RSSM-INPOM framework.

2.4.1. On choosing the Phase I sample size N
Generally, the larger sample size N and the larger aver-
age profile length �T are, the more accurate estimation
and the better performance of RSSM would be
expected. Hence, as �T increases, the required N
decreases. This can be shown from the results in
Section 2.3, As long as N � �T > 10q, the residuals
almost reach the minimum and are quite stable, where
q is the number of parameters in Ĥ: Hence, we suggest
collecting at least 10q�T IC samples before Phase II
monitoring. When sufficient IC data are unavailable,
self-starting methods can be implemented by simultan-
eously updating parameter estimates and checking for
OC conditions (Hawkins and Maboudou-Tchao 2007).

2.4.2. On determining the tuning parameters fk1, k2g
Small values of fk1, k2g may lose the effect of regulari-
zations, while large ones may induce more similar
rows in C and more zero entries in A, leading to an
easier model which may not be able to describe the
system. To search the optimal fk1, k2g corresponding
to a specific q (the state dimension), we suggest the
Bayesian information criterion (BIC) (Durbin and
Koopman 2012) to find proper values of fk1, k2g :

k̂1, k̂2
� �

¼ argmin
k1, k2

�2 log h Yð1:NÞjĤq
k1, k2 , X̂

ð1:NÞ
� �

þ qqk1, k2
�T logN

h i
,

[18]

where �2 log hðYð1:NÞjĤq
k1, k2 , X̂

ð1:NÞÞ ¼PN
i¼1

PTi
t¼1 ðyðiÞt

� Ĉx̂ðiÞt Þ0R̂�1ðyðiÞt � Ĉx̂ðiÞt Þ þPN
i¼1 Ti log jR̂j is the con-

ditional log likelihood of all the observable variables

given the estimated Ĥ
q
k1, k2 via Algorithm 1 and the latent

state variables X̂
ð1:NÞ

estimated by KF and KS. qqk1, k2 is

the number of nonzero components in Ĥ
q
k1, k2 : For

searching convenience, we use grid search method for k1
and k2 on a predefined two-dimensional grid, where the
grid range is proportional to the sample size which is
determined case by case. Binary search in the grid can
be adopted to efficiently get the best combination of
fk1, k2g for each alternative q (Zhang et al. 2021).

2.4.3. On selecting the number of states q
The selection of q shares a similar idea with fk1, k2g,
since a small value of q may not be able to describe
the system, while a large one may lead to overfitting. To

keep a balance between model complexity and fitting
result, we first estimate a range S of reasonable values for
q based on singular value decomposition from our ini-
tialization algorithm in Appendix A. Apparently, the
squared components of the diagonal matrix E indicate
the variances explained by each state. Using this informa-
tion, we can compute a range S for alternative q based
on an interval of proportion of total explained variance,
such as ð80%, 99%Þ: Then we also follow BIC to find
the optimal q for a desired modeling performance:

q̂ ¼ argmin
q2S

�2 log h Yð1:NÞjĤq
k1, k2 , X̂

ð1:NÞ
� �

þ qqk1, k2
�T logN

h i
,

[19]

where fk1, k2g are the selected best tuning parameters
based on Eq. [18].

2.4.4. On determining the EWMA smoothing parameter c
A small c means we have a strong ability of remem-
bering old observations, which helps accumulate small
shift and therefore improves the detection ability. On
the contrary, a large c puts more emphases on recent
observations and is able to detect large shift more
quickly. To make a tradeoff between both sides, we
usually set c 2 ½0:05, 0:15�:

2.4.5. On determining the upper control limit
In the case that the sequential OSPEs are exactly inde-
pendent, the EWMA statistic follows a v2(p) distribu-
tion in the asymptotic sense. Therefore, UCL can be set
in accordance with a desired Type I error a. However,
the independence assumption may not be generally sat-
isfied since eu is not precisely independent with its
covariance Su: As such, an alternative way is to adjust
the UCL numerically case by case. In particular, based
on a prespecified average IC PRL (APRL0), or average
IC TRL (ATRL0) through a large number of simulation
replications (e.g., 5000 replications in our numerical
studies), we set UCL by Monte Carlo simulation with
Bisection searching algorithm (Qiu 2008).

3. Numerical studies

Now we use numerical experiments to evaluate our
proposed method in two aspects: (1) how well RSSM
describes multi-channel profiles, especially their WPC
and BPC structures; (2) how fast and robust RSSM-
INPOM is for anomaly detection. Specifically, in
Section 2.3, we generate synthetic data from three
designed models. The performance of our RSSM in
modeling is investigated by four evaluation metrics. In

JOURNAL OF QUALITY TECHNOLOGY 9



Section 2.3, the sensitivity and efficiency of RSSM-
INPOM are demonstrated by evaluating the average
PRL1 (APRL1) and average TRL1 (ATRL1), along with
their standard deviations, i.e., SDPRL1 and SDTRL1,
under several representative OC patterns with differ-
ent shift magnitudes.

We also consider six baselines for comparison as fol-
lows: (1) SSM without regularizations; (2) First-order
vector autoregressive model (VAR(1)) (Pan and Jarrett
2007); (3) VPCA (Nomikos and MacGregor 1995); (4)
MPCA (Grasso, Colosimo, and Pacella 2014); (5)
MFPCA (Paynabar, Zou, and Qiu 2016); (6) SMFPCA
(Zhang et al. 2018b). The first two time series models
are used to demonstrate the superiority of our RSSM-
based dynamic modeling approach for unsynchronized
samples, and the four PCA-based methods are used to
demonstrate the superiority of our INPOM scheme.

3.1. Modeling performance evaluation

We first evaluate the modeling performance of differ-
ent methods. Synthetic data are generated from the
following three models, i.e., VAR(1), SSM and Fourier
bases, which correspond to the modeling mechanisms
of our baselines, and are also commonly used for
numerical studies in many works.

i. Model (I): YðiÞ ¼ fyðiÞ1 , :::, yðiÞt , :::, yðiÞTi
g 2 R

6�Ti

with yt ¼ bþ Byt�1 þ �t , where Ti is randomly
generated by setting Ti ¼ bSi þ 1

2c with Si �
Nð40, 5Þ: �t 2 R

6�1 is the white noise with every
component �jt�iidNð0, 10�3Þ: The other parame-
ters of VAR(1) are set as below.

b ¼

1
1
2
2
�1
�1

2
6666664

3
7777775,B ¼

0:6 0:2 �0:2 �0:2 0 0
0:2 0:6 �0:2 �0:2 0 0
0 0 0:6 0:2 0:2 0:2
0 0 0:2 0:6 0:2 0:2
0 0 �0:1 �0:1 0:6 0:2
0 0 �0:1 �0:1 0:2 0:6

2
6666664

3
7777775:

ii. Model (II): YðiÞ 2 R
6�Ti driven by Eqs. [1] and [2]

with latent states XðiÞ 2 R
3�Ti , where Ti is ran-

domly generated by setting Ti ¼ bSi þ 1
2c with Si �

Nð100, 10Þ: The parameters of SSM are set
as below.

iii. Model (III): YðiÞ 2 R
6�200 with YðiÞ ¼P3

k¼1 nikv
0
k þ ei, where ei 2 R

6�200 is the white
noise with every component eijn�iidNð0, 10�3Þ:
vk 2 R

200�1ðk ¼ 1, :::, 3Þ are the first three non-
constant Fourier bases, i.e., vkl ¼ cos ðktl þ kpÞ,
with a grid of n¼ 200 equally spaced sensing
points tlðl ¼ 1, :::, nÞ in ½0, 2p�: nikðk ¼ 1, :::, 3Þ is
the score set to be clustered which follows a six-
dimensional normal distribution as nik �
Nðfk,NkÞ, where fk and Nk are set as below.

f1 f2 f3
	 
 ¼ 1 1 �1 �1 0:1 0:1

1 1 1 1 0:5 0:5
1 1 �1 �1 1 1

2
4

3
50

,

Nk ¼ 10�3 � I6, k ¼ 1, :::, 3:

Figure 2 shows an intuitive illustration of 30 sam-
ples generated from the above three IC models. Note
that we focus on cluster-correlated data, the synthetic
data all have clustered structures. For each model, we
generate 50 training samples for offline estimation of
H0 and test each model on 50 testing samples. In par-
ticular, we learn our RSSM by Algorithm 1, which
converges within 50 EM iterations. For the SSM-based
methods, we determine the state dimension q via BIC
criterion. For fair competition, we select the number
of PCs for the PCA-based methods to be q as well.
Notably, as for the PCA-based models, they require
that all samples should be synchronized. Therefore,
for Model (I) and Model (II), when different samples
are misaligned, we first remove the non-synchroniza-
tion effect of different samples by dynamic time-warp-
ing (DTW) (Berndt and Clifford 1994).

The residuals of different fitted models are analyzed
for performance evaluation. We recall that residuals
are computed as the difference between the observed
data and predictions for time series models (or the
reconstruction curves for the PCA-based methods). If
the residuals are found neither autocorrelated nor
cross-correlated, then the model can successfully cap-
ture the features of multi-channel profiles. Statistical
tests can be used for this purpose, such as Durbin-
Watson test for autocorrelation, and Pearson correl-
ation analysis for cross-correlation. Consequently, we
test the modeling performance by comparing the

A ¼
0:95 0 0
0:9 0:9 0
0:5 0 1

2
4

3
5,C ¼

1 1 0 0 0 0
�1 �1 1 1 0 0
0 0 0 0 0:5 0:5

2
4

3
50

,

Q ¼ 10�5 � I3,R ¼ 10�3 � I6, l1 ¼ 1 1 0
	 
0

,V1 ¼ 10�3 � I3:
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residuals in terms of four evaluation metrics, i.e.,
mean absolute error (MAE), mean standard error
(MSE), mean Durbin–Watson (MDW) statistic, and
mean Pearson correlation coefficient (MPCC). Their
definitions are given in the footnotes of Table 1.
Generally, MAE, MSE, MPCC which are smaller and
MDW which is more closed to two are preferred. The
MAE, MSE, MDW and MPCC of different models are
shown in Table 1, where the best results are all shown
in bold face. The results can be summarized as the
following points.

1. The proposed RSSM has the smallest MAEs and
MSEs, followed by SSM. Also, RSSM has larger
MDWs and smaller MPCCs than SSM, which
shows it can capture WPC and the clustered BPC

better, and hence provides a more accurate
approximation to the underlying process. In add-
ition, the standard deviations of the SSM-based
methods are significantly smaller than the PCA-
based models, especially for Model (I) and Model
(II). This is because the SSM-based methods can
capture the dynamic evolution mechanism inside
the data better.

2. SMFPCA and MFPCA are less desirable than the
SSM-based models. This is because they do not
consider WPC and the structured BPC very care-
fully, which can be demonstrated by the undesir-
able MDWs and MPCCs. As to MPCA and
VPCA, they perform worse than SMFPCA and
MFPCA. This makes sense since the BPC struc-
ture assumed by MPCA is not satisfied by the

Figure 2. Illustration of the synthetic data from the three IC models.

Table 1. MAE, MSE, MDW and MPCC comparison of RSSM, SSM, VAR(1), SMFPCA, MFPCA, MPCA and VPCA on 50 test samples of
Models (I-III) (numbers in parentheses are the corresponding standard deviations).

RSSM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

Model (I) MAE(�10�2) 1.94(0.04) 2.15(0.05) 2.83(0.24) 4.05(0.57) 4.03(0.56) 4.98(0.43) 4.63(0.64)
MSE(�10�3) 0.59(0.02) 0.78(0.03) 1.25(0.21) 3.01(0.97) 2.99(0.95) 4.07(0.80) 3.66(1.11)

MDW 1.29(0.13) 1.14(0.11) 1.54(0.12) 0.76(0.12) 0.77(0.13) 0.53(0.09) 0.65(0.10)
MPCC 0.01(0.01) 0.04(0.01) 0.02(0.04) 0.15(0.06) 0.14(0.06) 0.17(0.08) 0.17(0.05)

Model (II) MAE(�10�2) 2.51(0.13) 2.55(0.15) 9.34(1.39) 7.41(0.45) 7.41(0.45) 9.10(2.45) 7.93(0.64)
MSE(�10�3) 1.00(0.10) 1.03(0.14) 14.3(2.00) 9.80(1.21) 9.82(1.24) 14.6(7.02) 10.8(1.79)

MDW 1.93(0.10) 1.90(0.08) 1.65(0.52) 0.34(0.04) 0.34(0.04) 0.28(0.05) 0.33(0.05)
MPCC 0.01(0.02) 0.02(0.02) 0.03(0.03) 0.06(0.03) 0.06(0.03) 0.11(0.03) 0.07(0.02)

Model (III) MAE(�10�2) 2.77(0.38) 2.99(0.40) 7.04(0.46) 4.91(0.37) 4.93(0.38) 5.07(0.42) 5.14(0.43)
MSE(�10�3) 1.23(0.35) 1.46(0.39) 9.79(0.92) 3.72(0.51) 3.74(0.53) 3.91(0.58) 4.00(0.59)

MDW 1.47(0.21) 1.35(0.20) 1.08(0.06) 0.78(0.03) 0.77(0.03) 0.70(0.04) 0.71(0.03)
MPCC 0.03(0.02) 0.05(0.03) 0.03(0.02) 0.16(0.02) 0.16(0.02) 0.17(0.04) 0.17(0.02)
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data, while VPCA ignores BPC by stacking up
channels into a high-dimensional vector. VAR(1)
performs the worst except for Model (I), since it
can only describe limited WPC by such an easy
model. Though it has quite large values of MDW,
it ignores BPC and has poor performance in
tracking signals. These can be further demon-
strated by the monitoring results later.

3. To further investigate the effect of the regulariza-
tions, we also compare the estimated parameters of
RSSM and SSM for Model (II). We simulate differ-
ent circumstances by scaling the transition matrix
as sA, where s is a scale parameter. Table 2 shows
the true transition matrix sA and observation
matrix C, and their estimations by RSSM and SSM
when s¼ 0.8. As expected, the l1 regularization can
successfully induce zero entries in A, and the graph
Laplacian regularization tends to encourage a clus-
tered C, while SSM fails to estimate A and C
accurately. The superiority of RSSM is more evi-
dent as s increases.

4. Finally, a study of the required sample size N for
Phase I modeling is conducted on the above three
models with different average profile lengths of
40, 100 and 200. For each model, we compute the
MSEs under different sample sizes by 100 replica-
tions. As shown in Figure 3, 50, 20 and 10

samples can achieve stable and quite small MSEs
for the three models respectively.

3.2. Monitoring performance evaluation

Now we test and compare the monitoring perform-
ance of RSSM-INPOM together with the six baselines
for the above three models. Since for multi-channel
profiles, OC scenarios can be numerous and it is
impossible to comprehensively study the performance
of all OC scenarios, here we choose the following six
representative scenarios.

i. Scenario (I): step shift in the jth-channel profiles
since sample m0 þ 1 ¼ 1 and time point s0 þ
1 ¼ 21, i.e., yðiÞjt ðOCÞ ¼ yðiÞjt ðICÞ þ dI 1ðt �
s0Þ, 8i, t, where I 1 is the indicator function
which equals 1 when its condition is true and
equals 0 otherwise. This shift simulates the sen-
sor measurement drift.

ii. Scenario (II): mean shift in the jth-channel pro-
files since sample m0 þ 1 ¼ 1 and time point
s0 þ 1 ¼ 1, i.e., yðiÞjt ðOCÞ ¼ yðiÞjt ðICÞ � ð1� dÞ þ
t
Ti
� yðiÞjTi

ðICÞ � d, 8i, t: This shift simulates the
mechanical degradation of a system component.

iii. Scenario (III): slope shift in the jth-channel pro-
files since sample m0 þ 1 ¼ 1 and time point
s0 þ 1 ¼ 1, i.e., yðiÞjt ðOCÞ ¼ yðiÞjt ðICÞ � t � d, 8i, t:
This shift simulates the mechanical degradation
of a system component.

iv. Scenario (IV): spike shift in the jth-channel pro-
files since sample m0 þ 1 ¼ 1 and time point
s0 þ 1 ¼ 21, i.e., yðiÞjt ðOCÞ ¼ yðiÞjt ðICÞ þ dI 2ðs0 

t 
 s0 þ 4Þ, 8i, t, where I 2 ¼ ½0:33, 0:67, 1:00,
0:67, 0:33� for s0 
 t 
 s0 þ 4 and equals 0
otherwise. This shift simulates the abnormal
input from the external environment.

Table 2. The true transition matrix sA and observation matrix
C, and their estimations by RSSM and SSM when s¼ 0.8.

True RSSM SSM

sA 0.76 0 0 0.76 0.00 0 0.94 �0.70 0.09
0.72 0.72 0 0.73 0.71 0.02 0.06 0.56 0.03
0.4 0 0.8 0.43 0 0.82 �0.00 0.12 0.75

C 1 �1 0 1.00 �1.00 0.00 0.23 0.48 �0.13
1 �1 0 1.00 �1.00 0.00 0.23 0.49 �0.14
0 1 0 0.06 0.96 0.07 �0.34 �0.11 0.09
0 1 0 0.06 0.96 0.07 �0.34 �0.11 0.08
0 0 0.5 �0.02 0.01 0.48 �0.08 0.20 0.27
0 0 0.5 �0.02 0.01 0.48 �0.08 0.20 0.26

Figure 3. MSEs of 100 replications under different sample sizes.
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v. Scenario (V): random shift in the jth-channel
profiles since sample m0 þ 1 ¼ 1 and time point
s0 þ 1 ¼ 1, i.e., yðiÞjt ðOCÞ ¼ yðiÞjt ðICÞ þ D,D �
Nð0, dÞ, 8i, t: This shift simulates the random
measurement error.

vi. Scenario (VI): parameter shift of a specific model
parameter h since sample m0 þ 1 ¼ 1 and time
point s0 þ 1 ¼ 1, i.e., hOC ¼ hIC � d: We choose
different h for different IC models as specified in
Tables B1–B6 of Appendix B. This shift simulates
the changed dynamics inside the system.

For fair comparison, the monitoring statistics for
SSM and VAR(1) are also constructed by T2 statistic
based on OSPEs, so they are INPOM-based meth-
ods. The monitoring statistics for the PCA-based
models are constructed according to their corre-
sponding works, which have to wait for monitoring
until the whole profile is available. For all the meth-
ods, we add EWMA with c ¼ 0:1 and find UCL via
Monte Carlo simulation such that APRL0 equals
200. We consider 12 shift magnitudes of d under
different scenarios for each model. For the first six
shift magnitudes, APRL1s and SDPRL1s based on

1000 simulation replications are compared. When
the shift magnitudes are larger, we compare their
ATRL1s and SDTRL1s to evaluate the in-profile
detection delay in time-point level. Figures 4–6
show the APRL1s and ATRL1s under the above six
OC scenarios of the three models. See Tables B1–B6
for the detailed results with the corresponding
standard deviations, which can be summarized as
the following points.

1. RSSM-INPOM control chart can generally achieve
the best performance for different kinds of data
and different OC patterns, especially when the
shift magnitudes are large. The merit is not only
owed to our RSSM’s accurate modeling, but also
to its finer granular INPOM mechanism.

2. As shown in Tables B1–B6, SDPRL1s and
SDTRL1s of the PCA-based control charts are
larger than the time series-based methods for
Model (I) and Model (II), which means they are
not suitable for dynamic system. On the contrary,
SDPRL1s and SDTRL1s of RSSM-INPOM are still
stable for Model (III), indicating that it is gener-
ally more robust in profile monitoring.

Figure 4. APRL1 and ATRL1 comparison in logarithmic scale of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA and VPCA with
c ¼ 0:1 and APRL0 ¼ 200 under Scenarios (I-VI) of Model (I).

JOURNAL OF QUALITY TECHNOLOGY 13



3. For the other six baselines, their monitoring per-
formance not only depends on their modeling
performance, but also relates to the OC scenario.
Take Model (II) for instance, the PCA-based
methods perform better than VAR(1) in most
cases, however, they show lower detection preci-
sion under Scenario (IV), as shown in Figure 5.
This is because the alignment step of the PCA-
based methods weakens the pattern of sparse
shifts significantly.

4. For different models, our RSSM-INPOM shows
greater superiority to other control charts when
the time length of each sample is longer. For
instance, under Scenario (III), RSSM-INPOM
reduces TRL1 of SMFPCA from 94.2 to 34.5 for
Model (I), from 1410 to 144 for Model (II),
and from 3300 to 235 for Model (III), respect-
ively. This is reasonable since the PCA-based
algorithms cannot be implemented until the
whole profile has been collected, which causes
longer detection delay when the profile length
is longer.

4. Case studies

In this section, to investigate the validity of the pro-
posed RSSM-INPOM control chart in real applica-
tions, we apply it into two real cases from advanced
manufacturing systems, i.e., the diffusion process in
semiconductor manufacturing and the pipe-casing
tightening process. Briefly, we summarize the step-by-
step implementation of RSSM-INPOM as follows: (1)
Preprocess the signals by real-time denoising and nor-
malization; (2) Learn RSSM using historical IC sam-
ples according to Algorithm 1; (3) Set UCL by Monte
Carlo simulation; (4) Run RSSM-INPOM control
chart for online samples according to Algorithm 2.

4.1. Diffusion process

In this diffusion process of semiconductor manufac-
turing, in-situ sensors located around a diffusion fur-
nace are used for real-time data collection of each
wafer (Zhang, Zhang, and Chen 2017). We analyze
nine representative sensors and denote them as S1-S9,
with S1-S6 shown in Figure 1(a). The time lengths of

Figure 5. APRL1 and ATRL1 comparison in logarithmic scale of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA and VPCA with
c ¼ 0:1 and APRL0 ¼ 200 under Scenarios (I-VI) of Model (II).
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different samples vary from 190 to 240. Clearly, there
exists clustered BPC structure in this case. For example,
voltage sensors (S1 and S2) are jointly influenced by
circuit power and local load; temperature sensors (S3,
S4, S7-S9) are all depended on thermal energy; while
pressure sensors (S5 and S6) are both affected by gas
flow rate. Consequently, these sensors can be divided
into three groups, and the four identified latent states
can be regarded as circuit power, load, thermal energy,
and gas flow rate. We have 28 IC samples in total.
Since the real OC data are confidential, we generate
OC signals to mimic the real OC situation as Figure
1(a) shows. These OC patterns are designed by engi-
neers based on the true anomaly patterns in the manu-
facturing process. In particular, a slope shift occurs in
early sensing points of S1 and S2. Also, both S5 and S6
have an earlier drop since time point s0 þ 1 ¼ 75:

The first 25 samples are used as historical IC set to
train our RSSM, and the rest three IC samples followed
by two OC samples are used for monitoring perform-
ance evaluation. We select the dimension of latent state
variable as q¼ 4 and tuning parameters as k1 ¼
0:5, k2 ¼ 2 based on BIC. The EM algorithm converges
in the 77th iteration. To test the goodness-of-fit of RSSM

on real data, Henze–Zirkler multivariate normality test is
performed on the OSPEs at each time point (Henze and
Zirkler 1990). As shown in Figure 7(a), there is no suffi-
cient evidence to reject the null hypothesis that OSPEs
are normally distributed, since almost all p-values associ-
ated with the tests are larger than the predetermined sig-
nificance level of 0.05. In addition, Figure 7(b) shows
the lag-a (a ¼ 1, :::, 10) autocorrelation of OSPEs, and it
can be observed that OSPEs almost have no significant
autocorrelation. Therefore, both the normality and inde-
pendence assumptions of OSPEs can be validated, which
are required for in-profile monitoring.

Now we run RSSM-INPOM control chart for moni-
toring. Figure 8(a) presents the comparison of RSSM-
INPOM control chart and the best SMFPCA control
chart selected from the six baselines, where the dash red
lines mark the time when OC alarms are triggered. It
can be seen that SMFPCA control chart cannot detect
anomalies until the current OC sample with a time
length of 216 has been entirely obtained, while RSSM-
INPOM control chart has a quick response to the OC
signals and successfully exceeds the UCL at time
point s1 ¼ 139 of sample m1 ¼ 4: Consequently, we get
the corresponding profile run length PRLSMFPCA

1 ¼

Figure 6. APRL1 and ATRL1 comparison in logarithmic scale of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA and VPCA with
c ¼ 0:1 and APRL0 ¼ 200 under Scenarios (I-VI) of Model (III).
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PRLRSSM�INPOM
1 ¼ 1, and the time run length

TRLSMFPCA
1 ¼ 216� 74 ¼ 143 and TRLRSSM�INPOM

1 ¼
139� 74 ¼ 65: It is noted that in practice, all the con-
trol charts stop running once an alarm is triggered,
though for illustrative purpose, we show the whole mon-
itoring statics for the five sequential samples.

4.2. Pipe-casing tightening process

In this case study, a motor drives a threaded pipe to
tighten into a casing, where a spring is installed for

buffering. Three sensors located on a backup tong are
used to collect key process variables during the screw
turning process, i.e., the number of turns, torque sig-
nal, and rotating speed signals. The first two sensors
(S1 and S2) measure the mechanical deformation of
the spring, which can be theoretically represented by
the linear relationship between the number of turns
(S1) and the torque (S2). Therefore, the intercept and
slope of the fitted curve by S1 w.r.t S2 can be consid-
ered as two identified latent states of the process. In
addition, it is the system power that influences the

Figure 7. Goodness-of-fit test on OSPEs of the diffusion process.

Figure 8. Five sequential samples and their corresponding monitoring statistics of SMFPCA control chart and RSSM-INPOM control
chart with c ¼ 0:1:
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rotating speed (S3) which records the electrical prop-
erty, and thus the system power is the third latent
state. According to this domain knowledge, the state
dimension is set to be three. In the actual manufactur-
ing process, anomalies happen occasionally due to
stripping of threads or slipping of pressure joints.
This will influence the physical dynamics of the
spring, which is further reflected in sensor signals. We
have 98 IC samples and three OC samples, with slope
shifts in S1 and S2, and step shifts in S3 since s0 þ
1 ¼ 1, as Figure 1(b) shows. It should be noted
that for different samples, their profile lengths vary
from 350 to 650 due to unavoidable variations
from the pre-tightening stage. For more detailed
information about the background, please refer to
Du et al. (2018).

Now we use 95 IC samples to learn our RSSM, and
the rest three IC samples followed by two OC samples
are used for monitoring. Since there is no clustered
BPC structure in this case, we set k1 as zero for the
graph Laplacian regularization. k2 is set to be 0.34 for
the l1 regularization. The EM algorithm converges in
the 126th iteration. Further, goodness-of-fit test is per-
formed before monitoring. As shown in Figure 9, we
can draw the same conclusion as in Section 2.3. In
Phase II monitoring, we construct RSSM-INPOM con-
trol chart and the best MFPCA control chart from
the baselines, as shown in Figure 8(b). We get the
corresponding profile run length PRLSMFPCA

1 ¼
PRLRSSM�INPOM

1 ¼ 1, and the time run length
TRLSMFPCA

1 ¼ 757 and TRLRSSM�INPOM
1 ¼ 199: Clearly,

RSSM-INPOM control chart has superior monitoring
efficiency to the current control charts, which is more
desirable for processes that need long time to complete.

5. Concluding remarks

Although profile monitoring has been extensively
studied, the challenges concerning how to design in-
profile monitoring schemes for multi-channel profiles
with clustered BPC are to be addressed. This article is

the first to combine profile monitoring with time ser-
ies-based model, which we believe will bring signifi-
cant impact in more efficient monitoring schemes. In
particular, we propose a RSSM-INPOM control chart
to dynamically monitor multi-channel profiles on the
fly. RSSM aims to describe the dynamic evolution
mechanism of each sensing point inside a profile, thus
giving the feasibility of INPOM and being extremely
effective for misaligned samples. Moreover, by incor-
porating graph similarity and sparsity on the model
parameters, it can not only describe the clustered BPC
of multi-channel profiles, but also help avoid overfit-
ting. The model parameters are efficiently learned via
an EM-incorporated MAP framework. Considering
that OSPE generated by this RSSM naturally indicates
the system deviation from its normal state, a T2 moni-
toring statistic with EWMA technique is constructed
based on OSPE. Extensive numerical studies and two
real cases demonstrate that our RSSM-INPOM control
chart possesses a better monitoring performance than
literature methods.

Along with this research direction, there are sev-
eral potential valuable extensions. First, by adding an
input variable, RSSM-INPOM control chart can be
extended to describe systems with feedback control.
Second, systems may be time varying in some multi-
stage manufacturing applications, and an extension
of the current static RSSM to a switched RSSM
would be desirable. Another potential venue is to
consider nonlinear cases by further extending the
current linear model to a nonlinear model, which
would be able to describe more general manufactur-
ing systems.
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Appendix A. Subspace identification for
parameter initialization

Subspace identification assumes observations can be pro-
jected into a subspace which is consisted of latent states,

i.e., yðiÞt ¼ CxðiÞt ¼ CAxðiÞt�1 ¼ CAt�1xðiÞ1 : Based on this, we
further implement singular value decomposition (SVD) on
the Hankel matrix stacked by the observations as follows.

Let UðiÞ
1:p, 1:q be the upper left q� p submatrix of U , E1:q, 1:q

be the upper left q� q submatrix of E, and V :, 1:q be
the first q columns of V: We initialize the observation

matrix as C0 ¼ 1
N
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Given the estimated state variables XðiÞ, A0 can be initial-
ized based on the least squares method, followed by the other
parameters estimated via their mathematical definitions.
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Table B1. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (I-III) for Model (I) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

I (j ¼ 1, 2; d� 10�2) APRL 0 206(201) 201(196) 195(189) 205(362) 193(332) 200(355) 201(343)
2 125(123) 133(133) 208(203) 204(353) 189(332) 165(318) 188(333)
3 78.4(73.6) 82.0(78.0) 184(173) 156(309) 161(306) 127(280) 160(306)
4 44.0(44.1) 46.5(45.7) 135(131) 131(281) 157(305) 93.5(226) 146(293)
6 13.1(12.0) 13.3(12.4) 72.3(72.1) 71.8(200) 86.5(210) 38.3(128) 86.9(208)
8 4.58(3.61) 4.80(3.96) 36.0(34.7) 28.5(89.6) 40.1(119) 20.7(83.1) 57.0(167)

ATRL 10 62.8(54.1) 64.4(58.6) 641(652) 726(2520) 798(2150) 325(326) 984(2840)
12 29.1(23.9) 30.0(25.3) 312(289) 377(212) 448(297) 264(241) 686(2260)
14 16.4(13.5) 16.9(13.2) 147(141) 313(164) 349(189) 218(185) 528(2330)
16 10.6(8.26) 11.1(7.35) 77.6(73.9) 259(104) 285(140) 168(103) 345(1540)
18 7.26(5.20) 7.98(5.16) 41.7(36.8) 209(79.7) 235(102) 140(87.6) 290(1320)
20 5.15(3.74) 5.86(3.39) 25.8(21.8) 180(69.0) 198(89.8) 125(92.7) 257(1350)

II (j ¼ 3, 4; d� 10�3) APRL 0 202(196) 196(193) 198(198) 208(369) 193(333) 196(347) 197(340)
5 157(164) 185(183) 199(194) 198(348) 209(353) 164(318) 182(328)
8 103(104) 159(153) 191(182) 181(328) 172(319) 144(298) 159(304)
10 77.2(79.5) 125(128) 167(157) 148(298) 145(269) 117(268) 152(295)
15 34.5(32.4) 67.1(62.3) 96.4(97.1) 83.1(212) 109(249) 59.6(171) 121(261)
20 12.6(13.0) 26.1(25.3) 41.7(42.3) 44.7(137) 62.1(166) 25.3(84.2) 77.0(196)

ATRL 30 68.9(98.0) 131(154) 143(206) 518(874) 630(843) 409(1360) 1360(4510)
32 46.5(69.6) 97.0(117) 80.2(135) 521(529) 654(564) 379(1270) 1170(3520)
35 26.2(38.1) 49.8(64.8) 35.7(63.4) 421(396) 473(318) 270(1070) 1010(3320)
40 11.9(18.6) 21.5(31.9) 17.5(24.5) 347(145) 393(270) 245(872) 799(2820)
45 7.32(7.29) 8.97(14.0) 8.43(9.11) 311(127) 360(127) 209(220) 534(1120)
50 5.30(5.79) 5.96(3.32) 5.42(3.60) 266(98.6) 277(140) 158(152) 485(1250)

III (j ¼ 5, 6; d� 10�3) APRL 0 195(196) 200(192) 199(188) 204(364) 200(338) 203(360) 196(338)
0.5 163(158) 176(176) 181(184) 198(352) 186(335) 169(320) 184(330)
1 83.1(80.8) 120(119) 95.6(95.0) 117(267) 120(264) 114(260) 187(339)

1.5 36.4(35.6) 65.7(64.1) 45.2(44.3) 62.0(181) 57.5(162) 69.1(194) 169(311)
2 14.9(14.3) 31.6(29.9) 21.9(21.2) 27.4(56.0) 29.3(67.0) 28.0(107) 136(288)
3 3.47(2.83) 7.07(6.51) 8.20(8.01) 6.25(2.96) 6.38(4.66) 6.34(8.18) 93.4(241)

ATRL 5 34.5(12.7) 46.1(26.1) 60.5(33.2) 94.2(34.6) 94.6(44.6) 87.0(53.3) 1870(6560)
6 27.8(5.54) 31.4(9.96) 52.0(27.8) 71.2(24.6) 67.0(28.8) 67.1(54.0) 905(4280)
8 22.7(4.07) 23.7(5.82) 34.8(11.9) 45.3(14.1) 45.0(14.0) 45.2(16.2) 434(2210)
10 18.5(4.83) 19.1(3.42) 22.8(5.95) 40.9(7.95) 40.4(3.78) 41.7(11.4) 356(2270)
15 12.5(3.12) 13.4(2.67) 15.1(3.72) 40.1(2.53) 40.1(3.79) 40.0(1.27) 208(1480)
20 9.08(2.43) 10.2(2.14) 13.5(2.96) 40(0) 40(0) 40.1(2.09) 83.4(133)
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Table B2. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (IV-VI) for Model (I) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

IV: (j ¼ 1, 3; d� 10�2) APRL 0 193(199) 201(198) 194(185) 199(351) 200(342) 205(354) 201(344)
12 114(111) 146(140) 124(119) 116(249) 153(299) 185(336) 197(337)
15 77.6(78.0) 117(114) 83.1(82.4) 102(239) 131(268) 175(324) 174(321)
18 38.4(40.0) 76.9(76.0) 49.5(48.8) 70.3(185) 101(229) 159(307) 169(314)
24 8.06(7.47) 23.2(22.8) 13.3(12.6) 32.0(99.1) 46.1(124) 144(294) 166(309)
30 2.41(2.12) 6.64(6.76) 4.01(3.51) 15.0(17.4) 22.5(58.1) 131(181) 141(293)

ATRL 34 16.4(32.5) 80.2(116) 47.4(65.0) 563(1200) 676(1300) 4010(9770) 5800(11600)
36 9.24(20.6) 44.8(68.1) 33.5(51.5) 504(1070) 837(1050) 4100(9760) 5390(11200)
38 5.85(14.7) 25.4(43.6) 19.0(32.5) 557(670) 602(643) 3810(8940) 5960(11800)
40 3.57(8.59) 18.8(35.5) 10.7(24.0) 499(537) 576(517) 3480(8850) 5770(11600)
42 2.52(4.53) 9.38(22.0) 6.21(15.9) 450(352) 628(390) 3980(9260) 5440(11500)
45 2.12(2.19) 4.26(10.6) 2.89(9.37) 484(259) 615(261) 3800(9350) 5830(11800)

V: (j ¼ 4, 6; d� 10�2) APRL 0 195(184) 204(201) 207(199) 197(364) 200(343) 203(363) 200(352)
2 125(128) 135(131) 141(141) 200(356) 204(356) 175(326) 194(335)
3 76.6(76.0) 78.4(75.8) 86.1(87.4) 184(336) 164(314) 180(335) 202(343)
4 35.8(36.3) 41.4(40.7) 52.3(53.4) 188(344) 159(305) 177(330) 205(343)
5 18.1(18.4) 19.8(19.9) 25.9(25.7) 146(294) 157(305) 174(331) 190(336)
6 8.49(8.41) 10.0(10.0) 12.2(12.4) 131(277) 116(257) 164(317) 204(358)

ATRL 9 46.8(60.1) 55.2(68.5) 72.8(79.5) 2590(7090) 2950(7190) 5750(11800) 7730(13600)
10 26.3(35.1) 33.8(48.0) 53.5(55.3) 2210(6410) 2210(6160) 5180(11100) 7570(13300)
11 17.8(25.9) 19.5(30.2) 35.8(44.8) 1820(5540) 1820(5080) 4680(10600) 7700(13400)
12 11.3(18.3) 13.2(20.6) 25.3(38.6) 1680(5333) 1420(3980) 4120(9610) 7660(13600)
14 5.22(8.84) 6.52(11.6) 15.1(19.3) 866(2390) 864(1880) 3130(8060) 7680(13300)
16 3.09(4.65) 3.84(6.44) 8.03(8.32) 598(882) 627(1440) 2770(7480) 6260(11900)

VI (h ¼ bð1, 1Þ; d� 10�2) APRL 0 204(200) 202(206) 204(201) 198(366) 199(355) 205(370) 204(358)
0.1 110(113) 158(159) 143(142) 217(367) 191(335) 187(335) 214(358)
0.2 41.7(42.4) 68.9(65.3) 86.3(81.6) 178(324) 192(331) 186(339) 192(334)
0.3 13.6(12.6) 24.4(24.4) 44.2(44.5) 154(305) 152(300) 148(303) 159(312)
0.4 5.58(4.90) 9.07(8.22) 22.9(22.0) 123(271) 111(254) 151(301) 137(283)
0.5 2.81(2.25) 4.10(3.27) 10.2(9.37) 73.5(194) 84.6(210) 121(260) 104(247)

ATRL 0.7 39.9(23.9) 50.0(34.2) 98.8(80.6) 1060(3490) 1160(3520) 3270(8440) 82.1(213)
0.8 30.3(12.1) 34.9(17.4) 57.2(41.9) 617(1601) 602(2726) 2480(7240) 69.0(202)
1 24.1(4.53) 25.5(6.14) 30.6(13.7) 369(237) 471(1510) 1270(4610) 47.2(150)
2 19.6(3.61) 20.8(3.97) 23.5(6.49) 202(162) 231(752) 656(2620) 42.4(35.6)
3 16.1(1.28) 16.9(1.33) 17.4(2.10) 103(57.6) 92.2(47.0) 239(1030) 40.6(11.8)
5 14.6(0.79) 14.6(1.01) 13.3(1.06) 41.6(13.3) 40.6(14.8) 55.4(18.5) 40(0)
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Table B3. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (I-III) for Model (II) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

I (j ¼ 1, 2; d� 10�3) APRL 0 200(196) 197(189) 205(198) 203(259) 198(237) 200(247) 199(241)
2 144(140) 203(199) 202(195) 201(242) 200(256) 205(258) 204(243)

3.5 105(110) 182(170) 211(201) 188(235) 208(258) 208(258) 194(242)
4.5 86.4(83.4) 152(153) 213(214) 204(247) 215(251) 211(255) 203(245)
6 55.6(59.4) 107(104) 206(190) 195(237) 192(247) 210(260) 209(257)
10 18.4(17.2) 32.8(32.6) 197(196) 156(199) 149(197) 209(258) 196(238)

ATRL 15 474(474) 692(683) 20600(19600) 9380(13700) 9800(14300) 21300(25900) 20700(24800)
20 152(150) 190(191) 19000(18700) 5700(7760) 6330(9290) 20100(25300) 19900(24200)
25 63.9(54.3) 66.3(59.5) 18500(18300) 3880(6030) 4250(6960) 21200(26400) 20100(24700)
30 35.2(20.3) 33.7(22.4) 17700(17600) 2540(2700) 2550(2980) 22500(27400) 20300(23900)
35 25.3(11.3) 23.2(12.2) 15100(15200) 1870(2010) 1780(1860) 20700(25500) 20600(25100)
40 19.2(7.21) 17.1(6.88) 13800(12900) 1440(1420) 1430(1400) 20200(25100) 19800(23900)

II (j ¼ 3, 4; d� 10�3) APRL 0 199(198) 204(201) 203(194) 203(253) 200(232) 199(250) 197(242)
2 107(106) 157(156) 201(190) 180(234) 179(229) 193(248) 195(238)
3 62.0(65.0) 103(98.9) 204(201) 156(196) 164(215) 200(243) 187(241)
4 32.5(32.2) 55.0(51.6) 204(194) 148(202) 143(197) 183(233) 191(229)
5 16.0(14.7) 29.0(28.8) 201(195) 127(181) 115(181) 189(243) 198(243)
7 5.09(4.46) 6.96(6.40) 208(204) 87.4(147) 84.4(148) 197(244) 181(225)

ATRL 9 127(143) 178(205) 21300(20300) 7860(15300) 6170(12700) 17800(22900) 17800(23500)
10 75.6(91.9) 93.7(117) 20000(19400) 6660(13700) 5630(11500) 17200(23200) 16100(21700)
12 31.2(38.0) 37.1(48.2) 20300(21000) 6060(13700) 5090(12000) 17000(23600) 15900(20700)
14 17.5(12.4) 19.3(17.4) 22400(20300) 4460(11600) 3900(11300) 15900(23100) 14300(19800)
16 14.3(3.33) 14.8(6.36) 21800(20700) 3960(10500) 4160(11400) 16100(23200) 13800(18800)
18 12.6(2.61) 13.1(2.43) 21500(20300) 2700(9520) 3360(10800) 15000(22200) 12600(18100)

III (j ¼ 5, 6; d� 10�3) APRL 0 199(185) 201(198) 207(207) 195(239) 202(251) 205(253) 195(241)
0.2 166(153) 178(175) 184(181) 195(251) 196(232) 206(261) 179(235)
0.6 113(113) 121(118) 131(138) 153(205) 144(193) 169(238) 147(205)
1 63.9(64.1) 78.5(75.2) 90.1(89.7) 111(160) 107(153) 129(209) 72.4(117)

1.5 26.6(25.1) 38.1(37.4) 58.1(57.6) 58.4(84.4) 55.6(96.7) 90.0(173) 46.3(74.7)
2 10.5(9.60) 21.8(19.7) 35.2(37.0) 33.0(42.8) 29.7(51.4) 58.2(134) 32.8(36.8)

ATRL 3 144(127) 208(186) 1390(1300) 1410(1260) 1110(1150) 4300(12400) 1280(1200)
3.5 66.4(45.2) 124(117) 970(932) 933(632) 798(653) 3460(11400) 940(630)
4 42.7(20.4) 84.2(75.1) 679(630) 761(519) 586(438) 3210(10100) 738(567)

4.5 31.8(11.3) 49.4(15.5) 517(480) 612(375) 493(362) 2670(9880) 574(312)
5 26.4(7.86) 38.7(8.00) 356(309) 511(307) 390(268) 2560(8700) 344(279)
10 12.1(2.41) 13.5(2.51) 78.9(36.4) 166(72.5) 136(58.2) 1070(7280) 109(32.8)
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Table B4. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (IV-VI) for Model (II) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

IV (j ¼ 1, 3; d� 10�2) APRL 0 196(191) 195(187) 206(197) 195(242) 196(237) 200(256) 201(245)
6 156(155) 171(160) 208(198) 201(246) 193(244) 201(252) 192(243)
8 85.1(81.6) 110(111) 194(182) 214(249) 197(245) 201(257) 190(231)
10 31.6(30.6) 63.0(63.0) 202(192) 200(248) 197(253) 203(254) 202(253)
12 10.1(9.21) 22.9(22.2) 194(189) 198(246) 209(255) 203(246) 193(234)
14 4.42(3.72) 7.87(7.36) 191(186) 203(243) 209(249) 203(234) 203(245)

ATRL 17 66.1(105) 146(179) 19100(19000) 19800(22900) 20900(25300) 20400(25600) 20900(26300)
18 44.9(75.3) 92.5(123) 16000(16100) 20400(25600) 21700(25900) 19400(24300) 19700(24600)
19 27.1(54.1) 61.0(97.3) 14400(14200) 20000(24500) 20500(25500) 19600(24200) 20000(23600)
20 15.6(34.8) 35.4(67.7) 10300(10800) 20100(24400) 20400(24900) 20700(26100) 20600(25200)
21 10.6(27.1) 17.5(39.2) 8900(8200) 20800(24900) 19400(23700) 20900(25800) 20400(25300)
22 6.23(17.1) 12.2(30.6) 5610(4920) 20100(23700) 19500(25000) 20500(26100) 20600(24600)

V (j ¼ 4, 6; d� 10�2) APRL 0 201(193) 203(198) 201(190) 201(239) 200(257) 205(256) 198(244)
2 119(115) 124(122) 197(190) 168(209) 151(195) 202(258) 200(252)
3 54.5(53.5) 64.8(64.3) 198(193) 96.5(135) 85.2(113) 204(250) 205(255)
4 18.8(18.4) 26.5(25.5) 190(179) 48.1(69.4) 40.9(52.9) 204(258) 202(248)
5 6.31(5.86) 8.65(8.15) 175(164) 23.0(32.8) 23.4(34.6) 203(250) 206(250)
6 2.57(2.23) 3.54(2.87) 175(171) 12.9(17.7) 13.1(16.1) 198(248) 191(231)

ATRL 7 80.5(91.0) 130(140) 15800(15600) 838(898) 889(1130) 19700(25100) 19800(22700)
8 47.2(56.7) 62.3(74.9) 15100(14400) 591(622) 612(811) 20500(24800) 19800(23000)
9 27.2(33.1) 36.7(44.1) 12800(12400) 465(635) 472(693) 20300(25600) 21300(24400)
10 15.9(20.7) 21.4(27.4) 12200(11700) 347(413) 365(410) 17500(21300) 20200(23100)
12 7.54(9.90) 9.22(12.4) 9150(8710) 262(251) 250(244) 16800(20600) 20600(24100)
15 3.85(5.25) 4.16(5.46) 4820(4980) 193(165) 199(159) 16500(20700) 21000(23300)

VI (h ¼ að1, 1Þ; d� 10�3) APRL 0 201(185) 196(188) 202(198) 201(249) 201(241) 207(264) 200(243)
1 125(129) 176(178) 171(172) 161(215) 153(208) 157(231) 139(175)
2 53.5(53.5) 87.5(80.9) 85.0(85.4) 80.0(113) 78.2(86.7) 89.0(167) 64.5(65.8)
3 18.3(17.9) 35.8(34.0) 43.7(42.7) 43.6(42.2) 41.7(41.1) 51.0(121) 36.4(35.0)
4 6.49(6.27) 11.5(11.2) 27.0(26.8) 27.5(26.2) 26.0(24.6) 40.0(132) 23.9(22.6)
5 2.95(2.32) 4.36(3.94) 14.1(13.8) 14.8(13.5) 14.2(13.2) 29.0(110) 12.7(11.6)

ATRL 5.5 148(167) 223(237) 481(465) 604(420) 547(435) 1260(9370) 433(341)
6 102(115) 141(158) 400(377) 538(326) 486(393) 1340(9440) 406(324)
7 44.8(49.5) 62.1(77.7) 227(207) 347(255) 311(233) 1240(9190) 264(187)
8 26.8(30.6) 30.8(36.9) 92.3(78.6) 211(132) 182(114) 1130(8950) 139(64.0)
10 14.6(3.84) 16.5(8.71) 52.4(34.4) 150(78.8) 128(57.2) 496(5250) 115(39.1)
15 5.38(0.79) 6.09(0.85) 10.4(1.07) 100(0) 100(0) 323(4480) 100(0)
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Table B5. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (I-III) for Model (III) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

I (j ¼ 1, 2; d� 10�2) APRL 0 200(197) 198(190) 202(188) 206(200) 200(203) 199(228) 195(196)
4 163(156) 197(189) 199(193) 162(178) 159(153) 172(206) 167(168)
7 108(110) 154(154) 199(193) 143(141) 115(115) 124(181) 138(135)
10 60.2(61.6) 122(119) 198(192) 89.4(93.0) 67.1(69.0) 84.8(130) 94.7(94.2)
15 19.8(19.8) 34.4(34.5) 196(192) 42.3(44.7) 28.3(20.7) 52.2(94.6) 46.1(44.1)
20 5.82(5.07) 6.91(6.48) 190(188) 19.3(19.9) 8.47(8.44) 28.8(68.4) 24.1(24.8)

ATRL 25 369(327) 472(434) 36100(36100) 2750(2800) 1350(1280) 3700(7730) 2700(2840)
30 143(114) 206(188) 34700(34800) 1460(1530) 820(731) 2840(6830) 2130(2150)
35 78.9(51.9) 128(101) 32800(33500) 1070(1120) 665(533) 2180(6080) 1340(1330)
40 46.8(39.5) 56.9(49.4) 30000(30600) 929(931) 556(423) 1790(5170) 1120(1150)
25 22.4(25.8) 28.6(32.0) 27700(26800) 845(827) 490(368) 1650(4350) 822(638)
50 9.65(13.3) 9.44(13.0) 25400(23900) 579(481) 433(327) 1190(2790) 515(519)

II (j ¼ 3, 4; d� 10�2) APRL 0 207(199) 201(195) 203(201) 205(203) 196(196) 196(229) 195(199)
6 163(156) 184(175) 203(200) 99.8(93.2) 75.7(74.6) 81.5(125) 105(108)
9 94.2(94.9) 116(116) 207(202) 45.4(45.4) 27.1(29.5) 32.9(66.8) 67.4(68.2)
12 44.9(43.3) 56.1(53.3) 210(202) 20.4(21.2) 11.4(13.1) 20.6(35.0) 40.4(41.7)
15 14.5(14.4) 19.8(19.6) 210(202) 8.86(7.04) 8.17(7.03) 15.6(12.3) 31.4(35.6)
18 4.91(4.45) 5.88(4.28) 211(204) 6.01(4.56) 5.61(5.47) 10.8(18.9) 19.1(12.1)

ATRL 23 213(167) 314(275) 40800(39600) 454(358) 586(438) 1210(1560) 3040(3080)
25 155(97.6) 194(147) 40700(39900) 379(301) 528(424) 1180(1460) 1940(1860)
30 102(30.1) 120(46.7) 40700(38000) 305(258) 469(331) 1120(1380) 1070(926)
35 74.8(9.24) 85.2(20.1) 36200(34700) 249(57.8) 228(64.4) 870(1060) 628(556)
40 59.5(5.98) 69.5(16.1) 33900(32900) 215(39.5) 205(39.1) 848(950) 324(103)
50 26.2(14.5) 30.2(12.4) 66.0(17.5) 201(12.6) 201(10.9) 841(947) 211(59.4)

III (j ¼ 5, 6; d� 10�3) APRL 0 207(199) 207(200) 202(202) 201(201) 198(198) 207(226) 198(201)
0.2 171(167) 183(177) 201(201) 207(208) 171(176) 198(224) 176(178)
0.4 108(106) 118(117) 200(201) 171(186) 138(137) 170(196) 154(157)
0.6 48.9(46.1) 59.2(55.2) 201(201) 126(128) 103(108) 125(140) 114(119)
0.8 19.9(19.8) 30.4(29.6) 198(200) 80.7(81.5) 64.1(67.2) 91.9(117) 71.1(72.5)
1 8.40(7.55) 9.37(8.44) 197(199) 52.1(53.7) 38.1(31.6) 61.0(72.7) 41.9(46.6)

ATRL 1.8 235(140) 286(191) 37100(38000) 3300(3490) 1380(1480) 8890(11300) 1420(1490)
2.2 157(42.1) 196(81.2) 36000(36900) 2370(2450) 1010(1030) 6890(8400) 799(810)
3 119(22.1) 148(32.0) 31300(31200) 1080(986) 558(430) 4850(5290) 523(303)
5 77.5(15.5) 97.3(35.6) 21500(20900) 392(280) 334(264) 2860(3350) 342(228)
10 36.0(7.08) 46.1(17.2) 15500(14400) 266(146) 241(117) 1810(1750) 333(279)
20 18.1(2.18) 24.1(7.11) 117(8.90) 257(145) 239(120) 515(257) 256(163)
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Table B6. APRL1 and ATRL1 comparison of RSSM-INPOM, SSM, VAR(1), SMFPCA, MFPCA, MPCA, and VPCA control charts with c ¼
0:1 and APRL0 ¼ 200 under Scenarios (IV-VI) for Model (III) (numbers in parentheses are the corresponding SDPRL1 and
SDTRL1 values).
Scenario d RSSM-INPOM SSM VAR(1) SMFPCA MFPCA MPCA VPCA

IV (j ¼ 1, 3; d� 10�2) APRL 0 204(198) 207(199) 204(202) 204(203) 199(196) 197(226) 196(196)
18 150(148) 165(154) 196(198) 182(180) 176(177) 195(225) 194(195)
20 108(102) 126(111) 192(194) 161(168) 158(158) 196(225) 196(197)
23 53.8(51.9) 58.4(54.6) 168(167) 91.4(90.6) 97.3(96.6) 180(207) 185(187)
26 21.5(21.4) 22.3(22.2) 130(124) 52.2(42.1) 47.5(36.3) 157(186) 151(153)
30 7.11(6.50) 7.14(6.46) 73.5(71.7) 23.0(11.0) 18.8(8.19) 108(126) 102(104)

ATRL 36 227(312) 238(317) 4000(4100) 2160(2140) 2020(1940) 9480(13800) 7230(7250)
37 165(239) 173(244) 3210(3320) 1520(1530) 1450(1410) 8500(11000) 8250(8190)
38 120(187) 128(194) 2580(2760) 1120(1060) 923(895) 7560(9420) 6900(6230)
40 67.9(129) 68.3(129) 1570(1660) 818(743) 723(620) 7490(8320) 5930(5240)
42 37.6(88.4) 38.8(88.4) 948(1060) 596(342) 522(318) 6200(7320) 4400(3750)
45 15.0(47.9) 16.8(48.6) 420(502) 417(279) 367(319) 5940(6290) 3260(2580)

V (j ¼ 4, 6; d� 10�2) APRL 0 203(202) 207(199) 206(200) 205(203) 199(196) 204(228) 197(198)
2 153(151) 156(155) 165(163) 203(205) 198(196) 195(227) 197(198)
3 111(115) 116(118) 125(114) 181(183) 179(177) 199(222) 199(198)
4 76.7(78.8) 87.5(87.5) 95.9(99.0) 160(162) 158(156) 198(221) 201(202)
6 36.2(36.4) 42.6(42.6) 47.7(46.7) 117(111) 112(117) 200(231) 198(199)
10 12.3(11.5) 12.8(12.0) 14.8(14.3) 45.5(45.2) 41.7(39.4) 172(198) 183(187)

ATRL 17 240(247) 337(341) 476(493) 6330(6320) 6190(6120) 26200(32000) 27200(27300)
18 172(177) 219(203) 349(362) 4870(4820) 4990(4950) 25100(29400) 27300(27700)
20 92.2(97.0) 114(117) 177(184) 3750(3720) 3610(3580) 26900(30200) 25000(25600)
22 55.0(65.1) 66.5(74.1) 101(111) 2560(2530) 2270(2230) 24700(28100) 23300(23500)
25 27.1(34.1) 32.0(34.0) 48.4(57.5) 1730(1650) 1450(1410) 18600(22700) 21100(21400)
30 12.4(15.9) 16.8(18.4) 18.0(24.6) 632(590) 577(528) 15200(18100) 17800(18000)

VI (h ¼ f11; d� 10�2) APRL 0 204(198) 207(199) 204(202) 200(198) 195(196) 208(224) 197(198)
3 121(119) 167(163) 175(176) 123(127) 131(134) 188(209) 195(196)
4 78.2(74.9) 106(105) 136(134) 84.7(83.6) 90.6(86.5) 154(179) 188(191)
5 45.7(45.5) 63.6(63.3) 87.7(86.0) 60.1(61.5) 68.7(65.8) 112(135) 153(154)
7 15.9(14.9) 25.7(24.7) 34.0(32.9) 31.6(32.8) 32.9(30.5) 74.6(95.1) 96.8(95.4)
8 9.47(8.75) 14.4(13.4) 23.2(22.5) 21.4(20.5) 22.0(20.7) 58.6(71.5) 63.3(65.1)

ATRL 12 235(210) 334(308) 1150(1050) 3200(3240) 3840(3750) 6420(10500) 7600(7940)
13 148(122) 201(174) 752(707) 2170(2150) 2920(2860) 5510(9570) 6200(6830)
14 104(78.7) 133(108) 467(433) 1860(1870) 1750(1770) 4250(8060) 4580(4690)
16 51.8(45.3) 72.8(65.3) 178(144) 1220(1250) 1240(1210) 2790(5870) 3850(3860)
18 25.9(28.5) 36.6(39.1) 90.2(56.8) 806(761) 819(798) 2100(3450) 3950(3940)
20 13.1(12.8) 13.2(13.3) 55.5(39.0) 491(350) 551(382) 1570(2870) 2690(2580)
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